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Everybody loves

homogeneous stuff!



Topological homogeneity
A space is homogeneous if all points “look alike” from a global
point of view:

Definition
A space X is homogeneous if for every x , y ∈ X there exists a
homeomorphism h : X −→ X such that h(x) = y .

Non-examples:

I ω + 1 (Because of the limit point)

I [0, 1]n whenever 1 ≤ n < ω
(Points on the boundary are different from points in the
interior)

I The Stone-Čech remainder ω∗ = βω \ ω
(W. Rudin, 1956, under CH, because of P-points)
(Froĺık, 1967, using a cardinality argument)
(Kunen, 1978, by proving the existence of weak P-points)



Examples:

I Any topological group

I Any product of homogeneous spaces

I Any open subspace of a zero-dimensional homogeneous space

I The Hilbert cube [0, 1]ω (Keller, 1931)

I Xω for every zero-dimensional first-countable X
(Dow and Pearl, 1997, based on work of Lawrence)

Homogeneous spaces are decently understood.
Compact homogeneous spaces are shrouded in mystery:

Question (Van Douwen, 1970s)

Is there a compact homogeneous space with more than c pairwise
disjoint non-empty open sets?

Question (W. Rudin, 1958)

Is there a compact homogeneous space with no non-trivial
convergent ω-sequences?



Strong homogeneity

Definition
A space X is strongly homogeneous (or h-homogeneous) if every
non-empty clopen subspace of X is homeomorphic to X .

Examples:

I Any connected space

I Q, 2ω, ωω (Use their characterizations)

I Any product of zero-dimensional strongly homogeneous spaces
(Medini, 2011, building on work of Terada, 1993)

I Erdős space E = {x ∈ `2 : xn ∈ Q for all n ∈ ω}
(Dijkstra and van Mill, 2010)

Non-examples:

I Discrete spaces with at least two elements

I ω × 2ω



Is “strong” a good choice of word?
Not particularly. For example, ω∗ is strongly homogeneous but not
homogeneous. Things get better under additional assumptions:

Theorem (folklore)

Let X be a first-countable zero-dimensional space. If X is strongly
homogeneous then X is homogeneous.
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The locally compact case (the trivial case)
From now on, all spaces are separable and metrizable.

Proposition

Let X be a locally compact zero-dimensional space. Then the
following conditions are equivalent:

I X is homogeneous

I X is discrete, X ≈ ω × 2ω, or X ≈ 2ω

Two open questions

Question (Terada, 1993)

Is Xω strongly homogeneous for every zero-dimensional space X?

Question (Medvedev, 2012)

Is X strongly homogeneous for every meager zero-dimensional
homogeneous space X?



An example of van Douwen

Theorem (van Douwen, 1984)

There exists a subspace X of R with the following properties:

I X is a Bernstein subset of R
I X is a subgroup of (R,+)

I There exists a measure µ on the Borel subsets of X such that
A ≈ B implies µ(A) = µ(B) whenever A,B ⊆ X are Borel

Given a Borel subset A of X , the measure of A is defined by:

µ(A) = Lebesgue measure of Ã

where Ã is a Borel subset of R such that Ã ∩ X = A.

Corollary

There exists a zero-dimensional homogeneous space that is not
locally compact space and not strongly homogeneous.



The main result
In his remarkable Ph.D. thesis, van Engelen obtained a complete
classification of the zero-dimensional homogeneous Borel spaces.
As a corollary, he proved the following:

Theorem (van Engelen, 1986)

Let X be a zero-dimensional Borel space that is not locally
compact. If X is homogeneous then X is strongly homogeneous.

Can the “Borel” assumption be dropped? Certainly not in ZFC, by
van Douwen’s example. However:

Theorem (Carroy, Medini, Müller)

Work in ZF + DC + AD. Let X be a zero-dimensional space that is
not locally compact. If X is homogeneous then X is strongly
homogeneous.

Notice that the above result also gives consistent “yes” answers to
both Terada’s and Medvedev’s questions. It is still open whether
AD is really needed for answering those questions.



A few words about the axioms
AD denotes the Axiom of Determinacy: every game on ω is
determined (either Player I or Player II has a winning strategy).
DC denotes the principle of Dependent Choices: it is strictly
intermediate in strength between the Axiom of Choice and the
Countable Axiom of Choice.

1. The set-theoretic universe is extremely regular under AD:
every set of reals has the Baire property, the perfect set
property, and is Lebesgue-measurable

2. AD is incompatible with the Axiom of Choice

3. ZF + DC + AD is consistent (assuming large cardinals)

4. ZF + DC is sufficient to carry out recursions of length ω

5. DC is equivalent to Baire’s Category Theorem (Blair, 1977)

6. ZF + DC proves Borel Determinacy (Martin, 1975)

Up until our main result, our ambient theory was ZFC. From now
on, we will always be working in ZF + DC.
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Wadge theory: basic definitions
Let Z be a set and Γ ⊆ P(Z ). Define Γ̌ = {Z \ A : A ∈ Γ}.
We say that Γ is selfdual if Γ = Γ̌. Also define ∆(Γ) = Γ ∩ Γ̌.

Definition (Wadge, 1984)

Let Z be a space. Given A,B ⊆ Z , we will write A ≤ B if there
exists a continuous function f : Z −→ Z such that A = f −1[B]. In
this case, we will say that A is Wadge-reducible to B, and that f
witnesses the reduction.

Definition (Wadge, 1984)

Let Z be a space. Given A ⊆ Z , define

[A] = {B ⊆ Z : B ≤ A}

We will say that Γ ⊆ P(Z ) is a Wadge class if there exists A ⊆ Z
such that Γ = [A]. The set A is selfdual if [A] is selfdual.



First examples of Wadge classes
From now on, unless we specify otherwise, we will always assume
that Z is an uncountable zero-dimensional Polish space.

I {∅} and {Z} (These are the minimal ones)

I ∆0
1(Z ) is their immediate successor

(Generated by an arbitrary proper clopen set)

Let 1 ≤ ξ < ω1. Recall that Σ0
ξ(Z ) has a 2ω-universal set U.

This means that U ∈ Σ0
ξ(2ω × Z ) and

Σ0
ξ(Z ) = {Ux : x ∈ 2ω}

where Ux = {y ∈ Z : (x , y) ∈ U} denotes the vertical section.

I Σ0
ξ(Z ) and Π0

ξ(Z ) (Generated by a universal set)

I Σ1
n(Z ) and Π1

n(Z ) for n ≥ 1 (As above)



The Wadge hierachy: a first glimpse
...

Σ0
2(Z ) Π0

2(Z )

???

Σ0
1(Z ) Π0

1(Z )

∆0
1(Z )

{∅} {Z}



Why do we need determinacy?

Lemma (Wadge, 1984)

Assume AD. Let A,B ⊆ Z . Then either A ≤ B or B ≤ Z \ A.

Here are two simple (but very useful) applications:

I In the poset W(Z ) of all Wadge classes in Z ordered by ⊆,
antichains have size at most 2

I If Γ is a Wadge class and A ∈ Γ \ Γ̌ then [A] = Γ

Theorem (Martin, Monk)

Assume AD. The poset W(Z ) is well-founded.

This yields the definition of Wadge rank.

I By the two results above, W(Z ) becomes a well-order if we
identify every Wadge class Γ with its dual class Γ̌

I The length of this well-order is Θ

From now on, we will always assume that AD holds.



Playing around with partitioned unions

Definition
Given ξ < ω1, define PUξ(Γ) as the collection of all sets of the form⋃

n∈ω
(An ∩ Vn)

where An ∈ Γ for n ∈ ω and {Vn : n ∈ ω} ⊆ ∆0
1+ξ(Z ) is a partition

of Z . A set in this form is called a partitioned union of sets in Γ.

I PU0(Γ) = Γ whenever Γ is a Wadge class

I PU0(∆) is selfdual whenever ∆ is selfdual

I If Γ a non-selfdual Wadge class, then PU0(Γ ∪ Γ̌) is a Wadge
class (the immediate successor of Γ)

I If Z is non-compact and 〈Γn : n ∈ ω〉 is a strictly increasing
sequence of non-selfdual Wadge classes, then PU0(

⋃
n∈ω Γn)

is a Wadge class (the supremum of {Γn : n ∈ ω})



The analysis of selfdual sets
The following fundamental result reduces the study of self-dual
Wadge classes to the study of non-selfdual Wadge classes:

Theorem (see Motto Ros, 2009)

Let ∆ be a selfdual Wadge class in Z . Then there exist
non-selfdual Wadge classes Γn for n ∈ ω such that

∆ = PU0

(⋃
n∈ω

(Γn ∪ Γ̌n)

)
I The above result shows that Wadge classes whose rank has

uncountable cofinality can never be selfdual

I By the same argument, if Z is compact, this is the case for all
Wadge classes whose rank is a limit ordinal

I However, it can be shown that the poset of non-selfdual
Wadge classes does not depend on the ambient space



Hausdorff operations

Definition (Hausdorff, 1927)

Given D ⊆ P(ω), define

HD(A0,A1, . . .) = {x ∈ Z : {n ∈ ω : x ∈ An} ∈ D}

whenever A0,A1, . . . ⊆ Z . We will call functions of this form
Hausdorff operations (or ω-ary Boolean operations).

Given n ∈ ω, set Sn = {A ⊆ ω : n ∈ A}. Then:

I HSn(A0,A1, . . .) = An

I
⋂

i∈I HDi
(A0,A1, . . .) = HD(A0,A1, . . .), where D =

⋂
i∈I Di

I
⋃

i∈I HDi
(A0,A1, . . .) = HD(A0,A1, . . .), where D =

⋃
i∈I Di

I Z \ HD(A0,A1, . . .) = HP(ω)\D(A0,A1, . . .) for all D ⊆ P(ω)

Hence, any operation obtained by combining unions, intersections
and complements can be expressed as a Hausdorff operation.



The difference hierarchy
Given 1 ≤ η < ω1, define the Hausdorff operation Dη as follows:

I D1(A0) = A0

I D2(A0,A1) = A1 \ A0

I D3(A0,A1,A2) = A0 ∪ (A2 \ A1)
...

I Dω(A0,A1, . . .) = (A1 \ A0) ∪ (A3 \ A2) ∪ · · ·
I Dω+1(A0,A1, . . . ,Aω) = A0 ∪ (A2 \A1)∪ · · · ∪ (Aω \

⋃
n<ω An)

...

Given 1 ≤ ξ < ω1, define:

Dη(Σ0
ξ) = {Dη(Aµ : µ < η) : each Aµ ∈ Σ0

ξ

and (Aµ : µ < η) is increasing}

It can be shown that Dη(Σ0
ξ) ( Dµ(Σ0

ξ) whenever η < µ.



Wadge classes from Hausdorff operations

Definition
Given D ⊆ P(ω), define

ΓD(Z ) = {HD(A0,A1, . . .) : A0,A1, . . . ∈ Σ0
1(Z )}

By fixing a 2ω-universal set for Σ0
1(Z ) and “applying HD to it”,

one obtains the following:

Theorem (Addison for Z = ωω)

Let D ⊆ P(ω). Then ΓD(Z ) is a non-selfdual Wadge class.

In particular, each Dη(Σ0
1(Z )) is a non-selfdual Wadge class.

In fact, it can be shown that they and their duals exhaust the
non-selfdual Wadge classes contained in ∆0

2(Z ).
The analog statement for ∆0

3(Z ) is false! However:

Theorem (Hausdorff and Kuratowski)

∆0
ξ+1(Z ) =

⋃
1≤η<ω1

Dη(Σ0
ξ(Z ))



Relativization: yet another reason to love
Hausdorff operations
When one tries to give a systematic exposition of Wadge theory, it
soon becomes apparent that it would be very useful to be able to
say when A and B belong to “the same” Wadge class Γ, even
when A ⊆ Z and B ⊆W for distinct ambient spaces Z and W .
(This is clear in some particular cases, like Γ = Π0

2 or Γ = D5(Σ0
1),

but what about arbitrary, possibly more “exotic” Wadge classes?)

It turns out that Hausdorff operations allow us to do exactly that
in a rather elegant way. The first ingredient is the following result,
proved by Van Wesep in his Ph.D. thesis:

Theorem (Van Wesep, 1977, for Z = ωω)

The following are equivalent:

I Γ is a non-selfdual Wadge class in Z

I There exists D ⊆ P(ω) such that Γ = ΓD(Z )



Robert Van Wesep: medical
scientist, mathematician, poet

Plus Ultra

The whole world having been
into its ultrapower injected
The latter being founded well,
if all goes as expected
The sets whose images contain
the point of criticality
Return an ultrafilter with
a dividend: normality!



Relativization: the crucial lemma
The second ingredient is the following “Relativization Lemma”.
(Similar result have appeared in work of van Engelen, and even
earlier in work of Louveau and Saint-Raymond.)
It is hard to understate how much confusion and ugliness was
cleared up by this lemma...

Lemma
Let Z and W be arbitrary topological spaces, and let D ⊆ P(ω).

I Assume that W ⊆ Z . Then A ∈ ΓD(W ) iff there exists
Ã ∈ ΓD(Z ) such that A = Ã ∩W

I If f : Z −→W is continuous and B ∈ ΓD(W ) then
f −1[B] ∈ ΓD(Z )

I If h : Z −→W is a homeomorphism then A ∈ ΓD(Z ) iff
h[A] ∈ ΓD(W )



Reasonably closed Wadge classes
Given i ∈ 2, set:

Qi = {x ∈ 2ω : x(n) = i for all but finitely many n ∈ ω}

Notice that every element of 2ω \ (Q0 ∪ Q1) is obtained by
alternating finite blocks of zeros and finite blocks of ones.

Define the function φ : 2ω \ (Q0 ∪ Q1) −→ 2ω by setting

φ(x)(n) =

{
0 if the nth block of zeros of x has even length
1 otherwise

where we start counting with the 0th block of zeros. It is easy to
check that φ is continuous.

Definition (Steel, 1980)

Let Γ be a Wadge class in 2ω. We will say that Γ is reasonably
closed if φ−1[A] ∪ Q0 ∈ Γ for every A ∈ Γ.



Why would anybody need that?

Lemma (Harrington)

Let Γ = [B] be a reasonably closed Wadge class in 2ω. If A ≤ B
then this is witnessed by an injective function.

The above lemma will be useful to us because every injective
continuous function f : 2ω −→ 2ω is an embedding.

Proof.
Let A∗ = φ−1[A] ∪ Q0. Since Γ is reasonably closed, we can fix
σ : 2<ω −→ 2<ω such that fσ : 2ω −→ 2ω witnesses A∗ ≤ B. We
will construct τ : 2<ω −→ 2<ω such that fτ : 2ω −→ 2ω witnesses
A ≤ A∗ and fσ ◦ fτ is injective.
Make sure that

1. τ(s) always ends with a 1

2. There are exactly |s| blocks of zeros in τ(s)

3. s(n) is the parity of the nth block of zeros in τ(s)



Begin by setting τ(∅) = 〈1〉.
Given s ∈ 2<ω, notice that τ(s)_~0 ∈ A∗ and τ(s)_~1 /∈ A∗.
Since fσ witnesses that A∗ ≤ B, we must have fσ(τ(s)_~0) ∈ B
and fσ(τ(s)_~1) /∈ B. Therefore, we can find k ∈ ω such that

σ(τ(s)_0k) 6= σ(τ(s)_1k)

Now simply pick τ(s_i) ⊇ τ(s)_ik for i = 0, 1 satisfying
conditions (1), (2) and (3).
To check that fτ has the desired properties, observe that

I ran(fτ ) ⊆ 2ω \ (Q0 ∪ Q1) (By conditions 1 and 2)

I φ(fτ (x)) = x for every x ∈ 2ω (By conditions 1 and 3)



Our main tool: Steel’s theorem
Given a Wadge class Γ in 2ω and X ⊆ 2ω, we will say that X is
everywhere properly Γ if X ∩ [s] ∈ Γ \ Γ̌ for every s ∈ 2<ω.

Theorem (Steel, 1980)

Let Γ be a reasonably closed Wadge class in 2ω. Assume that X
and Y are subsets of 2ω that satisfy the following:

I X and Y are everywhere properly Γ

I X and Y are either both meager or both comeager

Then there exists a homeomorphism h : 2ω −→ 2ω such that
h[X ] = Y .

Proof.
Without loss of generality, fix closed nowhere dense subsets Xn and
Yn of 2ω for n ∈ ω such that X ⊂

⋃
n∈ω Xn and Y ⊂

⋃
n∈ω Yn.

We will combine Harrington’s Lemma with Knaster-Reichbach
systems. (To be continued...)



Thank you for your attention

and have a good evening!


